Математика • 11 класс
258

Вычисление площадей и объёмов с помощью интеграла

Изображение 1
  • Площадь фигуры, ограниченной графиками непрерывных функций 𝑦=𝑓(𝑥) и 𝑦=𝑔 (𝑥), таких, что 𝑓(𝑥)𝑔 (𝑥) для любого x из 𝑎;𝑏, где a и b абсциссы точек пересечения графиков функций, вычисляется по формуле:

𝑆=𝑎𝑏𝑓𝑥𝑔𝑥𝑑𝑥.

  • Основная формула для вычисления объёмов тел:

𝑉=𝑎𝑏𝑆𝑥𝑑𝑥,

где 𝑆(𝑥) площадь сечения тела плоскостью, которая проходит через точку 𝑥𝑎;𝑏 и перпендикулярна к оси 𝑂𝑥.

  • Если тело получено в результате вращения вокруг оси 𝑂𝑥 криволинейной трапеции, которая ограничена графиком непрерывной функции 𝑦=𝑓(𝑥) на отрезке 𝑎;𝑏 и прямыми 𝑥=𝑎 и 𝑥=𝑏, то

𝑉=π𝑎𝑏𝑓2𝑥𝑑𝑥.

Было полезно?

Рекомендуем

Вы учитель или ученик?
Познакомьтесь с нашим образовательным онлайн-сервисом с тысячами интерактивных работ
Учителю
Удобно проводить уроки в классе, назначать работы на дом и анализировать результаты всего класса или конкретных учеников
Ученику
Самостоятельно изучать новые и повторять пройденные темы, готовиться по индивидуальной траектории и оценивать результаты на наглядных графиках
Зарегистрироваться в «Облаке знаний»