Математика • 10 класс
19

Пирамида

Изображение 1
  • Многогранник, одна грань которого n-угольник, а остальные грани треугольники, имеющие общую вершину, называют n-угольной пирамидой.
  • Высота пирамиды это перпендикуляр, опущенный из вершины пирамиды на плоскость основания.
  • Сечение пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани, пересекает плоскость основания пирамиды по диагонали и называется диагональным сечением пирамиды.
  • Диагональным сечением пирамиды является треугольник.
  • Площадью боковой поверхности пирамиды называют сумму площадей всех её боковых граней.
  • Площадь полной поверхности пирамиды вычисляется по формуле:

    Sполн=Sбок+Sосн,

    где Sбок  площадь боковой поверхности пирамиды, Sосн  площадь основания пирамиды.

  • Если боковые рёбра пирамиды равны или боковые рёбра образуют равные углы с плоскостью основания, то проекцией вершины пирамиды на плоскость основания является центр описанной окружности многоугольника, служащего основанием пирамиды.
  • Если боковые грани пирамиды образуют равные углы с плоскостью основания, то проекция вершины пирамиды на плоскость основания является точкой, равноудаленной от всех прямых, содержащих рёбра основания.
Было полезно?

Рекомендуем

Вы учитель или ученик?
Познакомьтесь с нашим образовательным онлайн-сервисом с тысячами интерактивных работ
Учителю
Удобно проводить уроки в классе, назначать работы на дом и анализировать результаты всего класса или конкретных учеников
Ученику
Самостоятельно изучать новые и повторять пройденные темы, готовиться по индивидуальной траектории и оценивать результаты на наглядных графиках
Зарегистрироваться в «Облаке знаний»
Логотип облако знаний
+7 (499) 322-07-57
info@oblakoz.ru

Контактный центр

МО, г. Долгопрудный,
Лихачевский проезд, 4, стр. 1

Отдел заботы о пользователях

Политика конфиденциальности

© ООО «Физикон Лаб», 2025

Пользуясь нашим сайтом, вы соглашаетесь с тем, что мы используем cookies 🍪